TA: LEE, Yat Long LucaEmail: yllee@math.cuhk.edu.hkOffice: Room 505, AB1Office Hour: Send me an email first, then we will arrange a meeting (if you need it).

Solution will be uploaded after the tutorial on Wednesday.

Recall

We shall prove (iii) \implies (i) in this tutorial. Then we finish the proof.

Theorem 1.3 Let (X, d) be a metric space and $K \subset X$. Then the following are equivalent:

- (i) *K* is compact
- (ii) Every sequence in *K* has a convergent subsequence which converges in *K*
- (iii) *K* is complete and totally bounded

Last week you learned:

Theorem 4.2 (Ascoli's Theorem) Consider $C(\overline{G})$ where *G* is bounded, open in \mathbb{R}^n . A set \mathcal{E} in $C(\overline{G})$ is precompact if it is bounded and equicontinuous.

Theorem 4.4 (Arzelà's Theorem) Every precompact set in $C(\overline{G})$ must be bounded and equicontinuous.

They are usually put together and called Arzelà-Ascoli's Theorem. It is one of the most essential and fundamental theorem in analysis.

In addition to the given statement, if \mathcal{E} is closed, then Arzelà-Ascoli can be written as \mathcal{E} compact \iff bounded and equicontinuous. (Check!)

Note that, in different context, there is a slightly different version of the Arzelà-Ascoli's Theorem. But they are more or less the same. We state the version of Arzelà-Ascoli's Theorem that we will be using later:

Arzelà-Ascoli's Theorem Let I = [a, b] be a compact interval. Let $\mathbf{x}_n(t) : I \to \mathbb{R}^d$ be a sequence of functions such that

- (i) there exists a constant M > 0 such that $|x_n(t)| \le M$ for any n and $t \in I$, i.e., $\{x_n(t)\}$ is uniformly bounded; and
- (ii) the sequence $\{\mathbf{x}_n(t)\}$ is equicontinuous in *I*.

Then there exists a subsequence $\{\mathbf{x}_{n_k}(t)\}$ that converges uniformly on I to a limit function $\mathbf{y}(t)$ as $n \to \infty$.

Proof of (iii) \Longrightarrow (i)

Idea: Proof by contradiction.

Goal: **For any** open covering of *X*, which is complete and totally bounded, we want to show the existence of **a** finite subcovering such that it covers *X*.

Proof:

Suppose there exists an open cover, $\{U_{\alpha}\}_{\alpha \in I}$, of *X* such that it does not contain **any** finite subcover from $\{U_{\alpha}\}_{\alpha \in I}$ that covers *X*.

Since *X* is totally bounded, then it can be covered by a finite ε -net. In particular, we may take $\varepsilon = 1$ for simplicity. If all these balls can be covered by finitely many U_{α} , then it contradicts our assumption. If not, then there must be a ball, say, $B(x_0, 1)$, that cannot be covered by finitely many U_{α} .

Since *X* is totally bounded, then $B(x_0, 1)$ is also totally bounded. In particular, we may cover $B(x_0, 1)$ by a finite ε -net, in which we choose $\varepsilon = \frac{1}{2}$ this time. Then one can observe that the centers of each $\frac{1}{2}$ -ball must be at most $1 + \frac{1}{2}$ away from x_0 . Otherwise, the ball will not cover $B(x_0, 1)$. If $B(x_0, 1)$ can be covered by finitely many U_{α} , then there is a contradiction. If not, then there is a ball $B(x_1, \frac{1}{2})$ such that it cannot be covered by finitely many U_{α} . Moreover, the above discussion implies

$$d(x_0, x_1) \le 1 + \frac{1}{2}$$

We are starting to see a loop here. Since *X* is totally bounded, then $B(x_1, \frac{1}{2})$ is also totally bounded. Then with a similar argument, one can see that

$$d(x_1, x_2) \le \frac{1}{2} + \frac{1}{4}$$

With the above construction, we obtain a sequence of point $x_0, x_1, ...$ in *X* such that each ball $B(x_n, 2^{-n})$ cannot be covered by finitely many U_{α} and that

$$d(x_n, x_{n+1}) \le 2^{-n} + 2^{-n-1}$$

for all n = 1, 2, ... From this, we see that $\{x_n\}$ is Cauchy as

$$\sum_{n=1}^{\infty} d(x_n, x_{n+1}) < \infty.$$

Together with the fact that *X* is complete, then it has a limit, say, *x*, that lies in *X*.

Now that we have obtained a convergent sequence, and that $\{U_{\alpha}\}_{\alpha \in I}$ is an open cover of X. Then the limit x must lie in at least one of the U_{α} 's. Moreover, U_{α} is open, and $x \in U_{\alpha}$, so there exists r > 0 such that $B(x, r) \subset U_{\alpha}$. Also, the convergence of x_n means that we can find an n such that

$$d(x_n,x)<\frac{r}{2}$$

for which $2^{-n} < \frac{r}{2}$. In particular, this implies $B(x_n, 2^{-n}) \subset B(x, r) \subset U_{\alpha}$. Contradiction.

Exercise 1

Source: Previous HW Problem from MATH4051@HKUST by Prof Frederick Fong

Suppose $\mathbf{F}_k = (F_k^1, ..., F_k^d) : \mathbb{R}^d \to \mathbb{R}^d$ is a sequence of C^2 -vector fields such that there exists a constant M > 0 such that

$$\sum_{i=1}^{d} |F_k^i(\mathbf{x})| + \sum_{i,j=1}^{d} \left| \frac{\partial F_k^i}{\partial x_j}(\mathbf{x}) \right| + \sum_{i,j,l=1}^{d} \left| \frac{\partial^2 F_k^i}{\partial x_j \partial x_l}(\mathbf{x}) \right| \le M$$
(0.1)

for any $\mathbf{x} \in \mathbb{R}^d$ and $k \in \mathbb{N}$.

Show that there exists a subsequence of $\{\mathbf{F}_k\}_{k=1}^{\infty}$ which converges uniformly on \mathbb{R}^d to a limit $\mathbf{F}_{\infty} : \mathbb{R}^d \to \mathbb{R}^d$.

Solution:

Equation (0.1) tells is that $\{\mathbf{F}_k\}$ and $\|D\mathbf{F}_k\|$ are both uniformly bounded on \mathbb{R}^d . Proposition 4.1 then implies that $\{\mathbf{F}_k\}_{k=1}^{\infty}$ is equicontinuous on \mathbb{R}^d . However, if we are to apply the Arzelà-Ascoli's Theorem, we need to apply it over a compact (or closed and bounded, but they are the same over Euclidean space) domain. We do it as follows:

- Consider the ball *B*₁(**0**), which is compact, then Arzelà-Ascoli's Theorem implies that there exists a subsequence {**F**_{1,k}}[∞]_{k=1} such that it converges uniformly to a limit function **F**_∞ on *B*₁(**0**).
- Then consider the ball B₂(0) and the subsequence {F_{1,k}}[∞]_{k=1}, which is also equicontinuous and uniformly bounded on B₂(0). Then, Arzelà-Ascoli's Theorem implies there exists a subsequence {F_{2,k}}[∞]_{k=1} ⊂ {F_{1,k}}[∞]_{k=1} such that it converges uniformly to a limit function on B₂(0). By the uniqueness of limit, such a subsequence must converges to a limit function in which it coincides with F_∞ on B₁(0). We may denote the limit function of {F_{2,k}}[∞]_{k=1} on B₂(0) by F_∞ as well.
- Inductively: There exists subsequences

$$\{\mathbf{F}_{1,k}\}_{k=1}^{\infty} \supset \{\mathbf{F}_{2,k}\}_{k=1}^{\infty} \supset \{\mathbf{F}_{3,k}\}_{k=1}^{\infty} \supset \cdots$$

such that for each $n \in \mathbb{N}$, the sequence $\{\mathbf{F}_{n,k}\}_{k=1}^{\infty}$ converges uniformly to a limit function \mathbf{F}_{∞} on $\overline{B_n(\mathbf{0})}$.

Next, we will use a diagonalization argument as in the proof of the Arzelà-Ascoli's Theorem.

Consider a diagonal sequence $\{\mathbf{F}_{k,k}\}_{k=1}^{\infty}$. We want to show that this is the subsequence as desired. For any compact set K, there exists N > 0 large enough so that $K \subset \overline{B_N(\mathbf{0})}$ (boundedness of K). Note that, for any $n \ge N$, the sequence $\{\mathbf{F}_{n,k}\}_{k=1}^{\infty} \subset \{\mathbf{F}_{N,k}\}_{k=1}^{\infty}$, and hence $\{\mathbf{F}_{n,n}\}_{n=N}^{\infty} \subset \{\mathbf{F}_{N,k}\}_{k=1}^{\infty}$. Since $\{\mathbf{F}_{N,k}\}_{k=1}^{\infty}$ converges uniformly to F_{∞} on $\overline{B_N(\mathbf{0})} \supset K$ as $k \to \infty$, so $\{\mathbf{F}_{n,n}\}_{n=N}^{\infty}$ converges uniformly on K. Then, by adding finitely many terms to the sequence $\{\mathbf{F}_{n,n}\}_{n=N}^{\infty}$, the sequence $\{\mathbf{F}_{k,k}\}_{k=1}^{\infty}$ converges uniformly on K to \mathbf{F}_{∞} as $k \to \infty$.

3